Copied to
clipboard

G = C42.38Q8order 128 = 27

38th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.38Q8, C23.506C24, C22.2092- (1+4), C22.2862+ (1+4), C425C4.11C2, C424C4.23C2, (C22×C4).125C23, (C2×C42).593C22, C22.127(C22×Q8), C2.C42.551C22, C23.65C23.65C2, C23.63C23.35C2, C23.81C23.24C2, C2.76(C22.46C24), C2.38(C23.37C23), C2.17(C23.41C23), C2.80(C22.47C24), (C4×C4⋊C4).77C2, (C2×C4).128(C2×Q8), (C2×C4).164(C4○D4), (C2×C4⋊C4).345C22, C22.382(C2×C4○D4), SmallGroup(128,1338)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.38Q8
C1C2C22C23C22×C4C2×C42C424C4 — C42.38Q8
C1C23 — C42.38Q8
C1C23 — C42.38Q8
C1C23 — C42.38Q8

Subgroups: 308 in 190 conjugacy classes, 100 normal (22 characteristic)
C1, C2 [×3], C2 [×4], C4 [×22], C22 [×3], C22 [×4], C2×C4 [×14], C2×C4 [×38], C23, C42 [×4], C42 [×6], C4⋊C4 [×24], C22×C4 [×3], C22×C4 [×12], C2.C42 [×4], C2.C42 [×12], C2×C42 [×3], C2×C42 [×2], C2×C4⋊C4 [×14], C424C4, C4×C4⋊C4, C425C4, C23.63C23 [×4], C23.65C23 [×4], C23.81C23 [×4], C42.38Q8

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], C2×Q8 [×6], C4○D4 [×8], C24, C22×Q8, C2×C4○D4 [×4], 2+ (1+4), 2- (1+4), C23.37C23 [×2], C23.41C23, C22.46C24 [×2], C22.47C24 [×2], C42.38Q8

Generators and relations
 G = < a,b,c,d | a4=b4=c4=1, d2=a2c2, ab=ba, cac-1=ab2, dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 16 59 27)(2 13 60 28)(3 14 57 25)(4 15 58 26)(5 35 111 81)(6 36 112 82)(7 33 109 83)(8 34 110 84)(9 56 32 41)(10 53 29 42)(11 54 30 43)(12 55 31 44)(17 64 68 49)(18 61 65 50)(19 62 66 51)(20 63 67 52)(21 100 72 45)(22 97 69 46)(23 98 70 47)(24 99 71 48)(37 113 87 126)(38 114 88 127)(39 115 85 128)(40 116 86 125)(73 124 94 103)(74 121 95 104)(75 122 96 101)(76 123 93 102)(77 120 90 107)(78 117 91 108)(79 118 92 105)(80 119 89 106)
(1 61 53 48)(2 51 54 100)(3 63 55 46)(4 49 56 98)(5 118 113 103)(6 106 114 121)(7 120 115 101)(8 108 116 123)(9 23 26 68)(10 71 27 18)(11 21 28 66)(12 69 25 20)(13 19 30 72)(14 67 31 22)(15 17 32 70)(16 65 29 24)(33 90 85 75)(34 78 86 93)(35 92 87 73)(36 80 88 95)(37 94 81 79)(38 74 82 89)(39 96 83 77)(40 76 84 91)(41 47 58 64)(42 99 59 50)(43 45 60 62)(44 97 57 52)(102 110 117 125)(104 112 119 127)(105 126 124 111)(107 128 122 109)
(1 117 55 104)(2 120 56 103)(3 119 53 102)(4 118 54 101)(5 100 115 49)(6 99 116 52)(7 98 113 51)(8 97 114 50)(9 96 28 79)(10 95 25 78)(11 94 26 77)(12 93 27 80)(13 92 32 75)(14 91 29 74)(15 90 30 73)(16 89 31 76)(17 33 72 87)(18 36 69 86)(19 35 70 85)(20 34 71 88)(21 37 68 83)(22 40 65 82)(23 39 66 81)(24 38 67 84)(41 124 60 107)(42 123 57 106)(43 122 58 105)(44 121 59 108)(45 128 64 111)(46 127 61 110)(47 126 62 109)(48 125 63 112)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,16,59,27)(2,13,60,28)(3,14,57,25)(4,15,58,26)(5,35,111,81)(6,36,112,82)(7,33,109,83)(8,34,110,84)(9,56,32,41)(10,53,29,42)(11,54,30,43)(12,55,31,44)(17,64,68,49)(18,61,65,50)(19,62,66,51)(20,63,67,52)(21,100,72,45)(22,97,69,46)(23,98,70,47)(24,99,71,48)(37,113,87,126)(38,114,88,127)(39,115,85,128)(40,116,86,125)(73,124,94,103)(74,121,95,104)(75,122,96,101)(76,123,93,102)(77,120,90,107)(78,117,91,108)(79,118,92,105)(80,119,89,106), (1,61,53,48)(2,51,54,100)(3,63,55,46)(4,49,56,98)(5,118,113,103)(6,106,114,121)(7,120,115,101)(8,108,116,123)(9,23,26,68)(10,71,27,18)(11,21,28,66)(12,69,25,20)(13,19,30,72)(14,67,31,22)(15,17,32,70)(16,65,29,24)(33,90,85,75)(34,78,86,93)(35,92,87,73)(36,80,88,95)(37,94,81,79)(38,74,82,89)(39,96,83,77)(40,76,84,91)(41,47,58,64)(42,99,59,50)(43,45,60,62)(44,97,57,52)(102,110,117,125)(104,112,119,127)(105,126,124,111)(107,128,122,109), (1,117,55,104)(2,120,56,103)(3,119,53,102)(4,118,54,101)(5,100,115,49)(6,99,116,52)(7,98,113,51)(8,97,114,50)(9,96,28,79)(10,95,25,78)(11,94,26,77)(12,93,27,80)(13,92,32,75)(14,91,29,74)(15,90,30,73)(16,89,31,76)(17,33,72,87)(18,36,69,86)(19,35,70,85)(20,34,71,88)(21,37,68,83)(22,40,65,82)(23,39,66,81)(24,38,67,84)(41,124,60,107)(42,123,57,106)(43,122,58,105)(44,121,59,108)(45,128,64,111)(46,127,61,110)(47,126,62,109)(48,125,63,112)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,16,59,27)(2,13,60,28)(3,14,57,25)(4,15,58,26)(5,35,111,81)(6,36,112,82)(7,33,109,83)(8,34,110,84)(9,56,32,41)(10,53,29,42)(11,54,30,43)(12,55,31,44)(17,64,68,49)(18,61,65,50)(19,62,66,51)(20,63,67,52)(21,100,72,45)(22,97,69,46)(23,98,70,47)(24,99,71,48)(37,113,87,126)(38,114,88,127)(39,115,85,128)(40,116,86,125)(73,124,94,103)(74,121,95,104)(75,122,96,101)(76,123,93,102)(77,120,90,107)(78,117,91,108)(79,118,92,105)(80,119,89,106), (1,61,53,48)(2,51,54,100)(3,63,55,46)(4,49,56,98)(5,118,113,103)(6,106,114,121)(7,120,115,101)(8,108,116,123)(9,23,26,68)(10,71,27,18)(11,21,28,66)(12,69,25,20)(13,19,30,72)(14,67,31,22)(15,17,32,70)(16,65,29,24)(33,90,85,75)(34,78,86,93)(35,92,87,73)(36,80,88,95)(37,94,81,79)(38,74,82,89)(39,96,83,77)(40,76,84,91)(41,47,58,64)(42,99,59,50)(43,45,60,62)(44,97,57,52)(102,110,117,125)(104,112,119,127)(105,126,124,111)(107,128,122,109), (1,117,55,104)(2,120,56,103)(3,119,53,102)(4,118,54,101)(5,100,115,49)(6,99,116,52)(7,98,113,51)(8,97,114,50)(9,96,28,79)(10,95,25,78)(11,94,26,77)(12,93,27,80)(13,92,32,75)(14,91,29,74)(15,90,30,73)(16,89,31,76)(17,33,72,87)(18,36,69,86)(19,35,70,85)(20,34,71,88)(21,37,68,83)(22,40,65,82)(23,39,66,81)(24,38,67,84)(41,124,60,107)(42,123,57,106)(43,122,58,105)(44,121,59,108)(45,128,64,111)(46,127,61,110)(47,126,62,109)(48,125,63,112) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,16,59,27),(2,13,60,28),(3,14,57,25),(4,15,58,26),(5,35,111,81),(6,36,112,82),(7,33,109,83),(8,34,110,84),(9,56,32,41),(10,53,29,42),(11,54,30,43),(12,55,31,44),(17,64,68,49),(18,61,65,50),(19,62,66,51),(20,63,67,52),(21,100,72,45),(22,97,69,46),(23,98,70,47),(24,99,71,48),(37,113,87,126),(38,114,88,127),(39,115,85,128),(40,116,86,125),(73,124,94,103),(74,121,95,104),(75,122,96,101),(76,123,93,102),(77,120,90,107),(78,117,91,108),(79,118,92,105),(80,119,89,106)], [(1,61,53,48),(2,51,54,100),(3,63,55,46),(4,49,56,98),(5,118,113,103),(6,106,114,121),(7,120,115,101),(8,108,116,123),(9,23,26,68),(10,71,27,18),(11,21,28,66),(12,69,25,20),(13,19,30,72),(14,67,31,22),(15,17,32,70),(16,65,29,24),(33,90,85,75),(34,78,86,93),(35,92,87,73),(36,80,88,95),(37,94,81,79),(38,74,82,89),(39,96,83,77),(40,76,84,91),(41,47,58,64),(42,99,59,50),(43,45,60,62),(44,97,57,52),(102,110,117,125),(104,112,119,127),(105,126,124,111),(107,128,122,109)], [(1,117,55,104),(2,120,56,103),(3,119,53,102),(4,118,54,101),(5,100,115,49),(6,99,116,52),(7,98,113,51),(8,97,114,50),(9,96,28,79),(10,95,25,78),(11,94,26,77),(12,93,27,80),(13,92,32,75),(14,91,29,74),(15,90,30,73),(16,89,31,76),(17,33,72,87),(18,36,69,86),(19,35,70,85),(20,34,71,88),(21,37,68,83),(22,40,65,82),(23,39,66,81),(24,38,67,84),(41,124,60,107),(42,123,57,106),(43,122,58,105),(44,121,59,108),(45,128,64,111),(46,127,61,110),(47,126,62,109),(48,125,63,112)])

Matrix representation G ⊆ GL6(𝔽5)

330000
420000
001000
000100
000003
000030
,
200000
020000
004000
000400
000004
000040
,
220000
030000
000100
004000
000002
000020
,
110000
340000
000200
002000
000003
000020

G:=sub<GL(6,GF(5))| [3,4,0,0,0,0,3,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,3,0],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[2,0,0,0,0,0,2,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0],[1,3,0,0,0,0,1,4,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0] >;

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim11111112244
type+++++++-+-
imageC1C2C2C2C2C2C2Q8C4○D42+ (1+4)2- (1+4)
kernelC42.38Q8C424C4C4×C4⋊C4C425C4C23.63C23C23.65C23C23.81C23C42C2×C4C22C22
# reps111144441611

In GAP, Magma, Sage, TeX

C_4^2._{38}Q_8
% in TeX

G:=Group("C4^2.38Q8");
// GroupNames label

G:=SmallGroup(128,1338);
// by ID

G=gap.SmallGroup(128,1338);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,120,758,723,184,675,248]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*c^2,a*b=b*a,c*a*c^-1=a*b^2,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽